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The stability of steady isothermal flow of one-dimensional Newtonian fibres is 
considered. Bifurcation theory yields a stable supercritical Hopf bifurcation, with 
frequency decreasing for increasing winder speeds near the critical winder speed. A 
new Chebyshev expansion procedure is used with time-marching to obtain accurate 
numerical solutions valid far from the critical point. Our numerical solution agrees 
well with our analytical solution near the critical winder speed, but differs significantly 
from those of previous numerical models. There is qualitative agreement with a 
previous isothermal experiment for oscillation amplitude but not for oscillation 
frequency. These comparisons are discussed. 

1. Introduction 
The manufacturing process for textile fibres consists of the extrusion of a very 

viscous liquid (usually molten glass or polymer) through an orifice. The resulting 
liquid-jet fibre is elongated by pulling i t  with a winder downstream of the orifice. This 
steady fibre flow is nearly pure elongational. For sufficiently large winder speeds this 
steady flow is susceptible to a hydrodynamic instability called ‘draw resonance’ 
(Petrie & Denn 1976). This instability causes time-periodic variations in the fibre 
diameter, which lower product performance and can disrupt the spinning process by 
causing fibre breakage. 

I n  the actual process the molten fibre cools rapidly upon leaving the orifice, causing 
large variations in the melt viscosity. The material may also have strongly non- 
Newtonian rheological behaviour. However, i t  is widely believed (Pearson 1976) that 
the basic mechanism of draw resonance is retained in the simplest model of 
fibre-forming flow, viz the one-dimensional flow of a Newtonian fluid with constant 
properties and having negligible effects of air drag, inertia, surface tension and 
gravity. 

This ‘ viscous-only ’ one-dimensional model presumes that the fibre flow varies 
slowly in the axial direction for both the steady flow and disturbances. This simplified 
model is the fundamental system studied for the past eighty years (Trouton 1906; 
Ziabicki 1961 ; Kase & Matsuo 1967; Matovich & Pearson 1969). Schultz & DasTis 
( 1982) derive these one-dimensional equations asymptotically from the axisymmetric 
equations of motion when ‘end effects’ near the orifice and winder are ignored. 

The present work is a comprehensive study of the nonlinear mechanics of draw 
resonance. We begin by examining the weakly nonlinear behaviour of draw resonance 
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near critical conditions. The resulting supercritical Hopf bifurcation leads the fibre 
flow into a limit cycle whose angular frequency decreases with winder speed. We find 
a very limited range of validity of the bifurcation analysis; we estimate the range 
for a to extend only 0.8 yo above the critical value a,, where a is the logarithm of the 
dimensionless winder speed. 

To examine larger winder speeds we solve the full nonlinear disturbance equations 
numerically. We solve the initial value problem using the Crank-Nicolson method 
in time and a new Chebyshev expansion procedure in space (Zebib 1984). We obtain 
accurate representations of the strongly nonlinear oscillations for a up to 20 yo above 
a,. We obtain good quantitative comparisons with our bifurcation theory for u+a,. 
For higher values of a we find good agreement with our results using an implicit 
second-order finite-difference method. We find both qualitative and major quantitative 
differences between our numerical simulations and those of previous workers. We also 
find significant differences between predictions from our model and experimental 
data. 

2. Formulation 
A slender Newtonian liquid fibre emerges from an orifice of radius ri at an average 

velocity wi into a passive gaseous environment. At a distance L the fibre is wound 
up a t  a velocity w, as shown in figure 1 .  All physical properties of the liquid fibre 
are considered constant. 

The unsteady, viscous-dominated equations were first given by Kase & Matsuo 
(1967). Schultz & Davis (1982) obtain these equations asymptotically from the 
axisymmetric equations. I n  non-dimensional form these are as follows : 

with 

and 

(WA) ,+A,  = 0, (AW,) ,  = 0, 

W(0,  t )  = A(0,  t )  = 1 

W(1,t) = ea = E. 

(2.la,b) 

(2.1 c , d )  

(2 . le )  

Subscripts denote partial differentiation. The lengthscale is L and we use a convective 
timescale L/wi. The axial velocity Wand the cross-sectional area A (  = zR2)  have been 
made dimensionless by their values a t  the orifice ( z  = 0). At the winder ( z  = l ) ,  the 
non-dimensional winder speed (or extension ratio) E = w,/wi is prescribed. The 
natural logarithm of E is denoted by a. The continuity condition is (2.1 a ) ,  and (2.1 b )  
represents the limiting form of the Navier-Stokes equation for negligible inertia, body 
force and surface tension. Then (2.1 b )  states that the tensile force (viscous normal 
force times cross-sectional area) is constant along the fibre length. There is an exact 
steady-flow solution to system (2.1). This basic state is 

(2.2a,b) 

We obtain the nonlinear disturbance equations by superposing disturbances as 
follows : 

(2.3a, b )  

We have followed Pearson & Matovich (1969) in factoring W, and A, from the 
disturbances. This, in effect, scales the disturbance quantities on.the local basic-state 
values. 

If ( 2 . 3 )  are substituted into (2.1), we obtain the nonlinear disturbance equations: 

A = A,(z; a) = ePaz, W = W,(z; a) = eaz. 

W(z,  t )  = W,(z) [l +w(z, t ) ] ,  A ( z ,  t )  = A,(z) [l +a(z ,  t ) ] .  

e-azat+az+w, = - (aw),  and w,,-aee-a2a, = -(uw,),, ( 2 . 4 a , b )  

( 2 . 4 c , d , e )  with a(0,  t )  = w(0, t )  = w(1, t )  = 0. 
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FIGURE 1. Schematic of fibre system. The orifice is located a t  z = 0 and the winder rotating a t  
peripheral speed of w, is located a t  z = L. 

3. Bifurcation theory 
It is convenient to define the vectors 

(3.la, b )  

and write system (2 .4a,  b )  in matrix-operator form : 

L'u =f, ( 3 . 1 ~ )  

where u is the solution vector, f is the vector of nonlinear terms, and L' is the linear 
partial differential operator : 

(3 . ld)  

The linearized stability problem f = 0 yields time-periodic solutions of system (3.1) 
and ( 2 . 4 ~ - e )  at  the critical value a: = a, with frequency w = wc.  These critical values 
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are obtained approximately by Pearson & Matovich (1969) and Gelder (1971). We 
shall need to find a, very accurately. The characteristic equation can be obtained 
in the form of exponential integrals (Schultz & Davis 1984), which were first written 
as sine and cosine integrals by Matovich & Pearson (1969). To the accuracy we 
require, these critical values are given by 

a, = 3.00657, wc = 14.011. 

Now we look for time-periodic solutions near the critical state. Expanding about 
the critical state, we have 

a = a,+Sa,+62a2+ ..., w = w,+Sw,+S2w2+ ..., u = S U , + ~ ~ U , +  ..., 
( 3 . 2 ~  b,c)  

where the limit-cycle amplitude 6 is given by 

S = ( u ,  u,) E J:' Jol u*ul dzdT, 

and T is the time scaled on the frequency by 

(3.3a) 

T = w ( 6 )  t. (3.3b) 

We substitute forms (3.2) into system (3.1) and equate like powers of 6. At order 6, 
the linearized problem at the critical point is 

f "u, = 0, (3.4a) 

subject to boundary conditions 

a,(O, t )  = U , , ( O ,  t )  = wl(l, t )  = 0. (3.4c, d ,  e )  

and the normalization condition (3.3a) becomes 

We write the solutions u, in terms of normal modes in time: 

(3.5a) 

where an asterisk denotes complex conjugate. Here ti, satisfies 

f , t i ,  = 0, (3.5b) 

where the partial-differential operator f ' has been transformed to the normal-mode 
operator f : 

D+iwce-acL 0 1 

- ino, e-"c O D  
f n = (  0 D - I ) ,  (3.5c) 

where D represents differentiation with respect to  z. The boundary conditions are 

&,lo) = U",,(O) = 6 , ( 1 )  = 0. (3.5d,e,f) 
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FIQURE 2. Linear solutions. The normal-mode solutions for the fibre area and velocity are given 
between the orifice and the winder (z = I ) .  Arbitrary phase is set by requiring D&(O) to be real. 
-, Re(&,) ; - - -, Im(d,) ; - - - , Re(&,); ----, Im(&J. 

The normalization condition (3.4 f )  becomes 

fl 

and the arbitrary phase is set by requring D.Lir,(0) to  be real. The eigen-functions a t  
the critical point are shown in figure 2. We use a Gill-modified Runge-Kutta 
integrator to calculate these as well as subsequent solutions in the bifurcation 
analysis. 

Before proceeding to higher orders, we use the inner product of ( 3 . 3 ~ )  to define 

L’ii = 0, (3.6,) the adjoint operator - 

where 0 

\ 1 

with boundary conditions 

a 
aZ 

-_ 

- 1  

G ( 1 ,  T )  = I JO, T )  = a,( 

(3 .66)  

T )  = 0. (3 .6c ,d ,e )  

We have used the nomenclature ii = (&,G,G,) to be consistent with ( 3 . l a ) ,  even 
though DG does not equal 65,. We solve system (3 .6)  using normal modes. The adjoint 
system (3 .6)  also takes the form 

= geiT+&*e-iT ( 3 . 7 ~ )  

such that, LQ = 0, (3 .7b)  

(3.7c) 

- 

- D - iw, ePacz 0 ia, w, e-acz 

-D 
where i=( 0 -D 

1 -1  
and subject to boundary conditions 

d(1) = &,(O) = 8,(1) = 0. ( 3 . 7 d , e , f )  
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FIGURE 3. Adjoint solutions. Normalization given by &(z) = 1. ---, Re(&); - - -, Irn(8); 
, Re(&,) ; - - - -, Im(&,). 

The adjoint solutions are shown in figure 3, where we have used the normalization 
& ( 2 )  = 1. 

At order P the expansions give the system 

(3.8a) 
-(a,wl),+(-wl+alw,z)e-aczalT 

-(a1w,,),+(a,w1+a,~,-a,a1w,z)e-"cZa,, 
L'U, =f, = ( 0 

with the boundary conditions 

a2(0, 5") = w2(0, T) = w2(l, 5") = 0. (3.8b, c, d) 

Since system (3.8) is inhomogeneous, we must use the Fredholm alternative theorem 
to guarantee solutions for u,. System (3.8) has a solution if and only if the right-hand 
side is orthogonal to the adjoint system, i.e. if 

<a&> = 0. (3.9a) 

Since the nonlinearities are quadratic, the time integration in (3.9a) always yields 
zero. Thus condition (3.9a) reduces to the complex equation 

iw, I ,  - ia, w, I ,  = 0, (3.9b) 

(3.9c) 

(3.9d) 

(3.10) 

where 1 2  = Jol (a, &: -&*) e-"cZ a, dz = 0.0872 - 0.0327i 

jO1 I ,  = [(a, &: -&*) z-&:] e-acZal dz = 0.0145-0.0206i. and 

Since 12/1, is not real a1 = w1 = 0. 

There are no corrections to  the frequency or amplitude a t  this order, which is the 
typical result for Hopf bifurcations. We solve for u2 by writJing 

u2 = tizo i- ti.& i- tiz2 eZiT i- ti* 22 e-ZiT, (3.110,) 
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where we have set the complementary solution to zero consistent with the O(S2) 
normalization condition (u,, u,) = 0 obtained from ( 3 . 3 ~ ) .  The solutions li,, satisfy 

L n  =An, (3.11 b) 
with the boundary conditions 

(3.1 1 c, d ,  e )  

,. 

(i2,(0) = 8,,(0) = Gzn(1) = 0. 

Here 1. ( O  - 6, 8,,, - a,, 8,, 

- Ci,8,, - a,, 
j i z  = 

(3.1lg) 

- 6, 8:, + (iw, e-ucZ 4, + &,,) Zil: 
f 2 0  = 0 " (  -&,(iw,e-acECi:)+ (iw, e-"cZ&l+d,,)8~z 

and 

The functions li,, and li,, are given in Schultz (1982). 
The corrections to the amplitude and frequency occur a t  order S3. We have 

, (3.12a) 1 - (a,  w2+a2 w,),+ ( - w 2 +  a2 w, z )  e-"cZalT 

- (a, w,, +a2 wlZ), + (a, w, + a2 w, -a, a2 0, z )  e-acz alT 
L'u, =f, = ( 0 

with the boundary conditions 

a3(0, T) = w3(0, T) = w3( 1 ,  T) = 0. (3.12 b, c ,  d )  

The Fredholm alternative condition of system (3.13) requires 

( 4 . 6 3 )  = 03 (3 .134  

(3.13 b )  

( 3 . 1 3 ~ )  

which simplifies to 

where 

I ,  + iw212 - ia,wc13 = 0, 

1, = 1' (&,* g31+ hz, hz1) dz = 0.0359 + O.O759i, 
J o  

g31 = a, 8,0 + a: d,, + a,, 8, + a,, 8: 

h,, = a, 820, + a: Gzzr + az0 8,, + a,, d;,. and 

We solve system (3.13) to obtain 

(3.13d) 

(3.13e) 

= 0.0350, w2 = -0.7892. (3.13f 1 
The solution to li,, provides a check on the values for a, and 8,. At order S3 system 
(3.5) becomes 

( 3 . 1 4 ~ )  

(3.14b,c,d) 

The orthogonality condition ( 3 . 1 3 ~ )  ensures that the boundary condition 831(1 )  = 0 
is satisfied regardless of the value of the shooting parameter D8,,(0). Schultz (1982) 
shows that this boundary condition is satisfied to within 0.5 %. The value of D8,,(0) 
is determined from the O(S3) normalization condition 

(U3 ,UJ  = 0. (3.14 e) 

-g31 ,+ i (aZzwC-w2)e -acZ( i lT  
'3 u31 = ( 0 

-h3,,+i(a,w,+a2w,-aa,a2 

with the boundary conditions 

d3 , (0 )  = 831(o) = 8 3 1 ( 1 )  = 0. 
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a 
FIGURE 4. Bifurcation diagram. Unstable solutions are hatched. The branched periodic solution 

is represented by 181' = (a-a,)/az. 
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FIauRE 5.  Family of solutions of a(z ,  T )  for a = 3.01. The disturbance area at an arbitrary time 
is designated by a long broken line and & of a period later by a short broken line. All other curves 
are a t  & period intervals. 

The other contribution a t  order S3 is a,,, which is a solution of the following system : 

- (4 f 4 2  + ~ 2 2 ~ 1 ) z  

- (4 ~ 2 2 z  + 6 2 2  c l z ) ,  

L3i233 = ( 0 

with boundary conditions 

(3.15a) 

The periodic solution is stable by the Hopf (1942) stability theorem. The branch 
is stable near the critical point since the bifurcation is supercritical. 

The draw resonance bifurcation diagram for the simple one-dimensional Newtonian 
fibre model is shown in figure 4. The steady solution represented by 1 S 1 = 0 is stable 
for a < a, and unstable for a > a,. As a is increased past the critical value, the flow 
will follow a stable supercritical time-periodic branch since a2 > 0. The frequency 
decreases as the winder speed (or a )  increases, since w 2  is negative. 
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FIGURE 6. Family of solutions of A(z, 5") for a = 3.01. Same as figure 5 except the areas are 
given as the full non-dimensional quantities using (2 .3b ) .  
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FIGURE 7. Family of solutions of a(z ,  T) for a = 3.04. The solutions a t  higher a exhibit 
asymmetry about a = 0. 

Plots of a(z ,  T )  can now be drawn for extension ratios close to the critical conditions. 
Figures 5 and 6 show families of cross-sectional area curves for a = 3.01 for times 
drawn & of a period apart. The slight asymmetry about a = 0 is introduced by 
higher-order terms. Note that even a t  this value slightly above the critical a, of 
3.00657, the variations of the area a t  the winder are about 30%. The wavelike 
character of the disturbance is now revealed, showing that waves travel downstream 
with increasing speed near the winder. For the linear case, the wave speed is the 
velocity of the basic state W = eaz (Schultz & Davis 1984). 

As a is increased further, the higher-order terms become important and the a(z ,  T) 
curves are more asymmetric, as shown in figure 7. This indicates that  the weakly 
nonlinear theory is starting to  fail. Of course, the theory must fail when negative fibre 
cross-sectional areas are predicted (i.e. when a(z ,  T) < - 1) .  Based on this criteria, the 
present weakly nonlinear theory (to order a3) is valid in the narrow range 
3.00657 < a < 3.03, i.e. from a = a, to a = 1.0O8ac. 
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N a, WC 

12 3.006 554 4 14.010991 
14 3.0065698 14.011 085 
16 3.0065728 14.011093 

TABLE 1. Linear stability results. 

a 

3.04 
3.04 
3.04 

3.1 
3.1 
3.1 
3.1 

3.15 
3.15 
3.15 
3.15 
3.15 

3.2 
3.2 
3.2 
3.2 
3.2 

3.5 
3.5 
3.5 
3.5 
3.5 
3.5 
3.5 
3.5 
3.5 
3.5 
3.5 

N 

12 
14 
16 

16 
16 
18 
18 

20 
20 
22 
22 
22 

20 
20 
22 
22 
22 

20 
20 
22 
22 
22 
22 
22 
24 
24 
26 
26 

At 

0.01 
0.01 
0.01 

0.01 
0.005 
0.01 
0.005 

0.01 
0.005 
0.01 
0.005 
0.0025 

0.01 
0.005 
0.01 
0.005 
0.0025 

0.005 
0.0025 
0.01 
0.005 
0.0025 
0.00125 
0.0005 
0.0025 
0.001 
0.001 
0.0005 

amax 

1.48 
1.41 
1.40 

3.02 
3.14 
2.96 
3.08 

4.17 
4.36 
4.10 
4.33 
4.37 

5.47 
5.70 
5.34 
5.64 
5.66 

16.9 

15.7 
15.4 
15.2 
15.1 
14.6 
14.4 
14.1 
14.1 

amin  

-0.647 
-0.632 
-0.628 

-0.816 
-0.830 
-0.809 
-0.823 

-0.867 
-0.882 
-0.860 
-0.881 
-0.885 

-0.905 
-0.916 
-0.896 
-0.917 
-0.919 

inner divergence 
-0.989 

inner divergence 
-0.989 
-0.990 
-0.990 
-0.991 
-0.986 
-0.989 
-0.986 
-0.986 

TABLE 2. Nonlinear limit-cycle oscillations. 

0 

13.30 
13.34 
13.34 

12.42 
12.34 
12.44 
12.36 

11.88 
11.74 
11.92 
11.76 
11.74 

11.38 
11.24 
11.44 
11.24 
11.22 

8.95 

9.22 
9.22 
9.23 
9.23 
9.37 
9.38 
9.41 
9.41 

The results of the bifurcation analysis do not change qualitatively when gravity, 
surface tension and inertia are included. When these effects are small, the values of 
a, and w, change without affecting the values of a2 and w2 (Schultz 1982). 

4. Numerical solution 
We now seeknumerical solutions to  the full strongly nonlinear initial boundary-value 

problem (2.4). The nonlinear system has been studied previously by Ishihara & Kase 
(1975) and Fisher & Denn (1975). We use a Crank-Nicolson method to march in time 
and a modified Galerkin-Chebyshev procedure to represent the spatial dependence 
of a(z ,  t )  and w(x, t ) .  

The Chebyshev representation has infinite-order convergence, and the modifications 



Nonlinear stability of Newtonian Jibres 

// 7 
// a/ ’ /  

// /// 

3.05 3.10 3.15 

. 

a 

465 

FIGURE 8. A comparison of analytical and numerical results. The bifurcation values for umin(i, t )  
and umax(l,t) are given by -, -- and --- for one-, two- and three-term expansions 
respectively. The results of our Chebyshev expansion numerical results are given by circles. Squares 
show the results of Fisher & Denn (1975) and the triangles give finite-difference results, which we 
use to confirm our Chebyshev expansion computations. 

as presented in Zebib (1984) allow the solution to  be solved as accurately as the 
standard tau method (Orszag 1971), but with fewer coefficients. The basis of this 
modification is the expansion of the highest spatial derivatives. These expansions are 
then integrated and the constants of integration are used to satisfy boundary 
conditions. The details of the numerical procedure are given in Appendix A. 

Linear stability results are readily obtained from (A 10) by neglecting the 
quadratic nonlinearities and solving the algebraic eigenvalue problem 

where (T are the perturbation growth rates. The results in table 1 confirm the values 
of a, and w,. Nine significant figures of the critical values are obtained for a truncation 
of N = 16. 

The initial conditions we use for ai(t) and wi(t) in the Crank-Nicolson marching 
technique are either the most-unstable eigenvectors of (4.1) (suitably normalized) or 
previously computed limit-cycle values. 

At this point we abandon the norm as computed by ( 3 . 3 ~ )  and use instead the 
minimum and maximum fibre area at the winder to quantify the disturbance 
amplitude. These values allow direct comparisons with previous studies, and they are 
more informative in determining the acceptability of a man-made textile product. 
The maximum and minimum values of a( 1, t)  (obtained by quadratic interpolation 
between time steps) as well as the oscillation frequency (amax, amin and w respectively) 
for the limit cycles are given in table 2 for a = 3.04, 3.1, 3.15, 3.2 and 3.5. 
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FIQURE 9. A comparison of oscillation frequency of the bifurcation analysis (-) and 
Chebyshev expansion results (- -). 

The rapidity of the onset of strongly nonlinear behaviour is clearly indicated by 
our results in table 2. At the ‘modestly’ supercritical value a = 3.5 we find that the 
maximum jet area a t  the winder is over 1000 times the minimum value of 1-0.986. 
The period 27~10 of the nonlinear oscillations increases from 0.448 a t  the onset of draw 
resonance to 0.668 a t  a = 3.5. 

The most accurate computations of table, 2, along with another computation a t  
a = 3.01 using a modified linearized marching technique (see below), are compared 
with the bifurcation analysis in figures 8 and 9. The computed value of amax( 1, T) 
for a = 3.01 differs by 13 % from the one-term asymptotic expansion (U - Su,) and 
by 1.5 yo from the three-term expansion (u - SU, + S2u, + S3u3). The corresponding 
errors for amin (1 ,  T )  are 16 and 0.7% respectively. Computed frequencies and 
amplitudes asymptotically approach those of the bifurcation analysis as 01 +a,. 

The fibre area a t  the winder ( z  = 1) is shown as a function of time for a = 3.01, 
3.1, 3.5 in figure 10. The sharp waveforms shown in figure 10 indicate that flow 
properties vary in the axial direction more and more rapidly as 01 increases. The range 
of validity of the one-dimensional model (2.1) becomes smaller when the disturbances 
cause large temporal or axial variations of the jet velocity or cross-sectional area. 
Clearly, for fixed slenderness ratio (orifice radius divided by the jet length) as defined 
by Schultz & Davis (1982), a and hence the disturbances can become sufficiently large 
to invalidate the one-dimensional theory. 

Three criteria affect the numerical results : the Chebyshev truncation, the time step 
and the convergence criteria. Table 2 shows that improving the spatial resolution 
(increasing N )  usually decreases the absolute value of amax, amin and l/w, while 
improving the time resolution (decreasing At)  has the opposite effect. The appropriate 

FIQURE 10. Numerical computations of a(1,t) at a = 3.01 (a ) ,  3.1 (b), 3.5 (c). Time origins are set 
by a( 1 , O )  = 0. The nearly sinusoidal pattern of a = 3.01 becomes like the ‘pulse train’ at a = 3.5 
as described in Ishihara L% Kase (1975). The secondary oscillations at a = 3.5 are only found using 
high-resolution computations. 
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FIGURE 10. For caption see opposite. 
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FIQURE 11.  Envelope umax(l, t) for a = 3.01. The maxima of a( 1 ,  t )  as computed with N = 14 and 
At = 0.01 are shown as vertical lines. The dashed envelope of these maximum show a small portion 
of the growth towards the limit cycle. This growth is oscillatory owing to numerical instabilities. 

time step and truncation are dependent on the value o f a .  ‘Rupture ’ occurs if a = - 1 .  
As this limit is approached, divergence of the inner iterations occurs at ‘large’ values 
of At. However, decreasing the time step leads to a successful march to a limit cycle. 
It is easily seen from figure 10 that  better spatial and temporal resolution are required 
as a is increased and these profiles approach the ‘pulse-train’ profile first shown in 
Ishihara & Kase (1975). However, our plot of a( 1, T )  shows secondary peaks within 
the limit cycle. These oscillations cannot be observed unless an implicit marching 
scheme is used in conjunction with high spatial representation. The strongly 
nonlinear nature of the results are revealed by rapid departure from the sinusoidal 
temporal oscillations predicted by weakly nonlinear theory. 

The third factor affecting the numerical results is the set of criteria for convergence 
to a steady limit cycle. These criteria are made difficult by the very slow linear growth 
rates near critical conditions and by the oscillatory convergence to the limit cycle. 
Figure 11 shows the envelope of the maximum values of a( 1,T)  for a: = 3.01 as the 
solution is approaching the limit cycle. The envelope is oscillatory owing to numerical 
instabilities in time marching. The oscillation can be eliminated by using an 
uneconomical time step of At = 0.001. Figure 11 also shows the very slow growth rate 
for the calculations with small I a--ac 1. Because of this behaviour, the criteria for 
determining the convergence to a steady limit cycle are rather subjective. We stop 
marching in time when the average maximum a( 1 , T )  is deemed accurate to within 
the significant digits presented in table 2. The steady limit cycle is obtained after 
about 4000 time steps for all cases where a 2 3.1. Smaller a require considerably more 
computation. 

Because the method of solution is implicit, 3-5 inner iterations per time step are 
required for the computations performed when a: > 3.1. The AS15 CPU time 
requirements are 4.4, 6.1, 8.5 and 11.0 s per time step for the truncation values 16, 
18, 20 and 22 respectively. 

TO reduce the large computational requirements, we also linearized the algebraic 
system arising from the Crank-Nicolson procedure. This linearization cut the 
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computer requirements per time step to one-fifth. A truncation error analysis for this 
linearization procedure is given in Appendix B. This is an important saving for the 
small-a computations because these solutions have very slow growth rates. The 
computations for a = 3.01 are obtained in this manner after 100000 time steps. 
However, this approach is limited to  small values of a. Local numerical instabilities 
are found at a = 3.15 with At as small as 0.001. Thus an iterative scheme must be 
used in conjunction with time marching to compute the nonlinear oscillations 
successfully for all but very small values of a. An average of (B 4) and (B 6) for the 
approximation of ($$)tf:At would eliminate the (d$/dt) (d$/dt) term. This formu- 
lation was not attempted, although it may be useful if a is large. 

5. Comparison previous work 
Since the publication of the bifurcation analysis of $3  in Schultz (1982), Demay 

(1983) has independently performed a bifurcation analysis on the same model 
problem. Although his formulation is somewhat different from that presented here, 
he obtains essentially identical results. 

Fisher & Denn (1975) present an approximate nonlinear analysis using an integral 
method. The non-dimensional frequency is 13.96 a t  a = 3.15, showing the right trend. 
However, their amplitude computations differ from those presented here by about 
a factor of ten, as shown in figure 8. These results show qualitative differences as well, 
since they show that I amin I > I amax I. Fisher & Denn realize that their solution is not 
accurate, because A( 1 ,  t) averaged over one time period is 8 yo less than the steady 
value. The discrepancy between these results and ours may be due to their application 
of a weakly nonlinear theory for values of a where it is no longer valid. Our results 
show that the region of validity of a weakly nonlinear theory is exceedingly small. 
(We validate that our solutions have reached a limit cycle by requiring that the 
integral of a( 1 ,  T )  over one period is zero to  within the precision of the computed 
values.) 

Ishihara & Kase (1975) use finite differences to examine supercritical draw 
resonance. Their results for A ( l , t ) / A s ( l , t )  versus time step are shown for several 
values of a in figure 12. We have calculated the non-dimensional frequency from these 
figures to  show again that frequency decreases with increasing winder speeds. These 
computations also underestimate am,,(l, 5") (for example, amax for a 'v 3.5 is lower 
than our calculations by approximately a factor of four). These results are innaccurate 
because Ishihara & Kase use an explicit technique that is first-order accurate in space 
and time. We have also computed draw resonance using a second-order implicit 
finite-difference technique. We use a finer mesh and time step than Ishihara & Kase 
(typical resolutions are 200 spatial elements and a time step of 0.005), and obtain 
results much closer to our Chebyshev expansion results. These finite-difference 
maximum and minimum values of a(1, t )  are also plotted in figure 8. We estimate, 
based on these comparisons, that 26 Chebyshev polynomials give comparable spatial 
resolution to  800 finite-difference nodes. 

There are no experimental data in a small neighbourhood about the critical 
parameter a,, so comparisons must be made between experimental data and the 
numerical results in the strongly nonlinear range. 

Donnelly & Weinberger (1975) experimentally examine draw resonance of isother- 
mal Newtonian fibres. For their range of measurements they find that a, x 2.8 and 
that the disturbance amplitude, as defined by the norm given in figure 13, increases 
nearly linearly with extension ratio. Figure 13 also shows our computational results 
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FIGURE 12. Nonlinear results of Ishihara & Kase (1975), redrawn. These solutions show the 
' pulse-train ' characteristic of high a. We have computed the dimensionless frequency given that 
a time step for these calculations is i& of the residence time, i.e. At = (1  -ee-")/lOO a. 

from $4 based on their norm. (Measurements are made a t  z = 0.5 and 0.25, since it 
is not possible to measure optically the variations in fibre area at the winder.) The 
caption of figure 13 gives values for the non-dimensional parameters, G, Re and Ca-l 
(defined in Schultz & Davis 1984) governing gravitational, inert'ial and surface-tension 
forces respectively. Our present theory takes all these parameters to be zeros. Schultz 
(1982) shows that the values of a2 and o2 remain constant for small effects of gravity, 
surface tension, and inertia. The data marked by triangles have large gravitational 
effects, and the data marked by circles have large surface-tension effects. The data 
given by squares most closely represents negligible gravity, surface tension and 
inertia. There is excellent agreement in disturbance amplitude versus extension ratio 
between our numerical results and experimental data for this case. It is unclear why 
the measured norm is unchanged between z = 0.25 and z = 0.5 for the high-gravity 
case marked by triangles, since an examination of a sample calculation like that shown 
in figure 6 shows that the norm should be a strong function of z .  

Some unpublished results from the same work (C. B. Weinberger 1982 private 
communication) show that no perceptible change in the disturbance frequency occurs 
with change in amplitude, in contrast with our analytical and numerical results. (We 
note that the wheel diameter reported in Donnelly & Weinberger should be 63.5 mm 
and not 50.4 mm.) Schultz & Davis (1984) discuss the difficulties in comparing 
experiments with the one-dimensional model because of the end conditions near the 
winder and the orifice. I n  addition, inertia can become important in the limit-cycle 
oscillations even when i t  does not affect the steady-state flow. 

Figure 14 shows fibre-weight variations for the viscoelastic data of Ishihara & 
Kase (1975). Our estimates of dimensionless frequencies from this figure show that 
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FIGURE 13. Comparison of computations with experiments. A comparison of the Chebyshev 
expansion results with experimental data of Donnelly & Weinberger (1975) using the norm 
Rmax(z, t)/R,,,(z, t )  of Donnelly & Weinberger. Here R is the free-surface radius rather than the 
cross-sectional area, z is fixed and t is chosen to maximize (or minimize) the jet radius over one 
oscillation period. The curves are forced to intersect at the origin by subtracting the critical 
extension ratio E, from E .  The experimental value of E, is approximately 17, as compared with 
e3.00657 = 20.21 predicted by one-dimensional theory. Our Chebyshev computations for z = 0.5 are 
shown as a dashed line (solid circles indicate computational points). The experimental data of 
Donnelly & Weinberger (using the nomenclature of Schultz & Davis 1984) are given by 

G Re Ca-' Z 

3.75 0.0021 0.36 0.5 
0 7.80 0.0010 1.71 0.5 
n 31.2 0.0020 1.28 0.5, 0.25 

Here G, Re and Ca-' are the dimensionless groups representing gravity, inertia and surface tension 
respectively. 

frequency increases rather than decreases with increasing winding speed. These wave 
forms show that relatively small oscillations do not have the sinusoidal pattern 
predicted by weakly nonlinear theory. 

6.  Conclusions 
Our bifurcation analysis has shown formally that draw resonance is a supercritical 

Hopf bifurcation which leads to  a limit cycle whose oscillation frequency decreases 
with increasing winder speeds. The analysis to  leading order is valid for a very small 
range, 1 < a/a, < 1.008, because nonlinear terms soon dominate as CL > a,. The 
analysis is extended to larger a through the full numerical integration of the strongly 
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FIGURE 14. Unsteady viscoelastic experiments of Ishihara & Kase (1975), redrawn. Draw resonance 
of a polymer (PET) in a non-isothermal experiment is determined from measurements of the 
solidified fibre. Our calculations from these curves indicate that the non-dimensional frequency 
increases as a increases, in contrast with the isothermal Newtonian experiments, possibly indicating 
a new phenomenon. 

nonlinear disturbance equations using a Chebyshev expansion technique. The results 
of these computations approach those of the bifurcation analysis as a+a, and show 
significant differences from results of previous workers. This indicates the need for 
high resolution for the numerical integration of this seemingly simple nonlinear 
system. 

Our results for oscillation amplitude as a function of winder speed compare 
favourably to the experimental data for isothermal, Newtonian fibres. However, there 
are quantitative differences in the disturbance amplitudes and the trend for the 
disturbance frequency has not been experimentally observed. Experiments with 
viscoelastic fluids show that frequency decreases with amplitude, possibly indicating 
a new phenomenon introduced by the material nonlinearities. Since most fibres are 
made from viscoelastic fluids, this would be a fruitful area for further study. 
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Appendix A 
First, we use the transformation 

x = 2 2 - 1  ( - l < x < l ) .  (A 1)  
Then the highest spatial derivatives of a and w in (2 .4a,  b )  assume the representations 

where q ( x )  is the Chebyshev polynomial of degree j and Nu and N ,  are truncation 
parameters. Here we have chosen Nu = N ,  = N .  For convenience in notation and 
algebraic manipulation we express the integrals with respect to  x of (A 2 )  as double 
sums 

N + l  N N + I  N Nf2 N 
a =  X C A j i a i q ,  w,= X C W j i ) w i q  and w =  X C Y i w i q .  

j-0 i=o j -0 i=o j - 0  i-0 

(A 3a,b,c)  

Aji = f j j )-SjoFi (0 Q j  Q N + l ) ,  (A 4 a )  

Wj:’ =fJ:’-@jo(a,-3i) (0 <j Q N + 1 ) ,  (A 4b)  

yt =fji-~Sjl(cri-ai)-Sjo(cri+ai) (0 Q j  < N + 2 ) .  (A 4c)  

The constant matrices Aji ,  y.i and WJ;) are given by 

Here f j i  andf):) arise from recursive relations obtained by integrating (A 2 a )  once and 
(A 2b)  twice and using the identity (Orszag 1971) 

where 
c .  3 3  = d .  = O  f o r j < O ,  c o = 2 ,  d o =  1 and cj  = d j =  1 f o r j > O .  

(A 5b,c ,d)  

They have the values 

f j i )  = Sj, itl Bjl) + Sj, i - l  yj’), hi = Sj, if, Bi + Sj, yi + Sj, i - 2  Si, (A 6a, b )  

where S i , j  is the Kronecker delta and the non-zero values of Bi, yi,  and Si are given 

- y p  
2 ( i - 2 )  

(3  Q i Q N ) .  6. = ~ 

The quantities ai, ai and 36’) are given by 

N + 1  N+2 N t z  

chosen to satisfy the boundary conditions ( 2 . 4 ~ - e ) .  
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The spatial dependence in (2.4) is represented by developing e-az in the form 

N ,  

E e p  Tp. (A 8) e-+z(l+z) = 
p=o 

Rather than using the usual collocation procedure, this is obtained by solving the 
boundary-value problem 

yzs-$a2y = 0, y(-1) = 0, y(1) = eca (A 9a, b,  c) 

by a similar expansion procedure. We find that N ,  = 12 is sufficient to represent the 
exponential term to within lop9 for all a considered in the range - 1 < x < 1 .  We now 
substitute (A 1)-(A 4) in (2.4), multiply by (1 - x2)-i Tk and integrate over - 1 d x < 1 
to derive the initial-value problem satisfied by aE(t) and W k ( t )  for 0 d k d N :  

(A 10a) 

(A 106) 

(A 1Oc) 

(A 10d) 

(A 1 O e )  

where we have used the identity 

Tk = i (Tk+j  + T k - j ( ) .  

Appendix B 
The time marching of system (A 10) can be represented symbolically by 

%= $h$. 
dt 

The solution vector is represented by <, and $h$ represent the quadratic nonlinear 
terms. A difference approximation of (B 1) is given by 

(efAt-C)/At = ($h@)tfiAt+O(Atz), (B 2) 

where superscripts represent the time step. The error term is given by 

O(At2) 'V -- - At2 + o(at4). 
24 dt3 
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The Crank-Nicolson method approximates (q5$)t*At by the average 

(q5$)t+iAt = +[(q5$)t  + (q5$) t+At ]  + O(At2). 

The truncation error of (B 4) is 

:(:$ :+h dq5 d$ WAt 
O(At2)- -- -$++q5+2- -) (At2)+0(At4). 

dt dt 

The linearized form of is given by 

(q5$)t+iAt = +[q5t$t+At + q5t+At $7 + O(At2). 

The truncation for the linearized formulation is then 

O(At2) - -- 1 yq5 --$+--$-2--) d2$ d$d$ t+iAt (At2)+O(At4), 
8 dt2 dt2 dt dt 

which is very similar to  that of the Crank-Nicolson method. 
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